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Abstract Species similar to the  Red-winged
Blackbird  (Agelaius phoeniceus )
How do you tell a blackbird from a crow? There has been shiny cowbird

great progress toward automatic methods for visual recog-
nition, including ne-grained visual categorization in v

the classes to be distinguished are very similar. In a task
such as bird species recognition, automatic recognitic sy
tems can now exceed the performance of non-experts — most
people are challenged to name a couple dozen bird species,
let alone identify them. This leads us to the question, “Can

a recognition system show humans what to look for when
identifying classes (in this case birds)?” In the context of
ne-grained visual categorization, we show that we can au-
tomatically determine which classes are most visually sim-
ilar, discover what visual features distinguish very samil
classes, and illustrate the key features in a way meaning-
ful to humans. Running these methods on a dataset of bird
images, we can generate a visual eld guide to birds which
includes a tree of similarity that displays the similarig-r (a)

lations between all species, pages for each species showing  Distinguishing the Red-winged Blackbird from

the most similar other species, and pages for each pair of ~ the American Crow  (Corvus brachyrhynchos )

similar species illustrating their differences.
1. Introduction
How do you tell a blackbird from a crow? To answer
this question, we may consult a guideboekg(, [22, 27]).
The best of these guides, products of great expertise and

effort, include multiple drawings or paintings (ln differte The shape of the beakis di  erent in the Red-winged Blackbird and the American Crow.
poses and plumages) of each species, text descriptions of
key features, and notes on behavior, range, and voice.

From a computer vision standpoint, this is in the domain
of ne-grained visual categorizatigrin which we must rec-
ognize a set of similar classes and distinguish them from
each other. To contrast this with general object recogmitio
we must distinguish blackbirds from crows rather than birds
from bicycles. There is good, recent progress on this prob-

Ielm, including Worlfl_ﬂn bird spre])c:jes Ildentl clatlo_n n pa;t_lch Figure 1. (a) For any bird species (here the red-winged blackbird,
ular .9, [1, 29)). These methods learn c asslers WNICN ot center), we display the other species with most similar appear-
can (to some standard of accuracy) recognize bird specie$nce.  More similar species are shown with wider spokes. (b)

but do not explicitly tell us what to look for to recognize For each similar species (here the American crow), we generate
This work was supported by NSF award 1116631, ONR award N£001 a VIsual eld guide” page highlighting differences between the
08-1-0638, and Gordon and Betty Moore Foundation grant 2987 species.

common raven brewer blackbird

The pattern around the wing is di erent in the Red-winged Blackbird and the American Crow.
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Figure 2. A similarity tree of bird species, built from our visual similarity matrsing the neighbor-joining method of(]. Species
visually similar to the red-winged blackbird (see Figdjere in blue, and those similar to the Kentucky warbler (see Fiduage in red.

bird species on our own. close in the similarity tree but far in the evolutionary tree
In this paper, we consider the problem not of performing are of special interest, as these may be examplesrofer-

ne-grained categorization by computer, but of using com- gent evolutiorj1 1], where similar traits arise independently
puter vision techniques to show a human how to perform in species that are not closely related.

the categorization. We do this by learning which classes ~We base our similarity calculations on the “part-based
appear similar, discovering features that discriminate be one-vs-one features” (POOFs) di [for two reasons. First
tween similar classes, and illustrating these featurels avit  is the POOFs' strong performance on ne-grained catego-
series of carefully chosen sample images annotated to indifization; in particular they have done well on bird species
cate the relevant features. We can assemble these visualizaecognition. Second is their part-based nature. Fine-
tions into an automatically-generated digital eld guide t grained classi cation encourages part-based approaghes b
birds, showing which species are similar and what a birder cause the classes under consideration have many of the
should look for to tell them apart. Example gures from a Same parts (for birds, every species has a beak, wings, legs,
page we have generated for such a guide are shown in Figand eyes) so it is possible to distinguish classes by the ap-
urel. pearance of corresponding parts. Experiments by Tversky

In addition to the visualizations in these gures, we bor- and Hemenway /] suggest that people also use proper-

row a technique from phylogenetics, the study of the evo- ties of parts to distinguish similar classes, and bird gaide
lutionary relations between species, to generate a tree offten describe species in terms of their parts, as shown in
visual similarity. Arranged in a wheel, as shown in Fig- Figure3. All this suggests that part-based features may be
ure2, this tree is suitable as a browsing interface for the eld the bestway to show humans the key features. POOFs have
guide, allowing a user to quickly see each species and alithe additional advantage of being easy to illustrate; each i
the species similar to it. We compare our similarity-based @ssociated with a learned support region that can be high-
tree with the phylogenetic “tree of life,” which describeet  lighted in our visualizations.
evolutionary relations between bird species. Places where This paper makes the following contributions:

the trees are not in agreement — pairs of species that are 1. We propose and explore a new problem: using com-
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to nd the mostdiscriminativeregions. Both {] and [21]

deal with image rather than object classi cation, so use un-
aligned image patches rather than our part-based features.

ey Denget al. [6] found discriminative regions in bird by ex-

plicit human labeling in the guise of a game.

Although we take a part-based approach to allow us to
annotate our images, there is also non-part-based work that
Figure 3. A picture of the red-winged blackbird from the Sibley attempts to describe the features of a class. Parikh and
Guide [27] shows part-based features that distinguish this species.Grauman [ 7] discover discriminative image attributes and
ask users to name them. Yanai and Barnard] onsider
, X Sy X , the opposite problem, starting with a named concept and
grained visual cgtegorlzatlon, to |Ilustrate_ the differ- learning whether or not it is a visual attribute, while Berg
ences bet\_/vee_n similar classgs. The goal is not to PElet al, [2] discover attribute names and classi ers from web
form identi cation, but to see if we can show a human data. This could be used to provide supplementary, non-

what to look for when performmg identi cation. part-based text descriptions of species differences iwieur
2. We propose an approach to this problem. We demon—Sual eld guide

strate a fully automatic method for choosing, from a
large set of part-based features, those that best shovg_ Visual Similarity
the difference between two similar classes, choosing 5, goal is, in a set of visually similar classes, to de-

sample images that exemplify the difference, and an- o mine which classes are most similar to each other, and

notating the images to show the distinguishing feature. 5,0 those most similar classes, to understand and visu-
3. We explore the relation between visual similarity and ;> \what it is that still distinguishes them.

phylogeny in bird species. Species which are visually To make this concrete, we consider the problem of

similar but not close in the evolutionar_y ‘tree of ife” bird species recognition, using the Caltech-UCSD Birds
may be examples of convergent evolution. 200 dataset (CUBS-200f]. We use the 2011 version
2. Related Work of the dataset, which includes 11,788 images of 200 bird

. ) species, annotated with the locations of 15 parts (bead; for
There is a good deal of recent work on ne-grained cat- head, crown, throat, breast, belly, nape, back, tail, and

egorization, much of it dealing with species or breed recog- left and right eyes, wings, and legs). The dataset is di-
nition of e.g, trees [3], owers [16], butter ies [8, 27], ’ ’

dogs [L5, 18, 19, and birds [, 6, 8, 9, 29, 3(]. All of

this work uses part-based features in one way or another
although it is mostly concerned with performing recogni-
tion rather than explainingowto perform recognition. We

puter vision techniques, in particular methods of ne-

vided into training and test sets of roughly equal size. With
many examples of species with similar appearance, and also
many species with widely varying appearance, the dataset
presents a dif cult recognition task.

use the POOFs ofl] for reasons discussed in Sectibn 3.1. A Vocabulary of Part-based One-vs-One Fea-
Work on ne-grained visual categorization with “hu- tures (POOFs)
mans in the loop” §, 25], proposes a model in which a The rst step toward our goal is to construct a vocabulary

person answers questions to assist a recognition systém thaf features suitable for differentiating among classesun o

makes a nal identi cation. Our proposal is conceptually domain. For this we use a collection of POOE] which

opposite: the recognition system shows what features towe describe brie y here.

look for, which will help a person to perform identi cation. Each POOF is de ned by the choice of two classes, two
Our goal is not classi cation itself, but an understand- parts (a “feature part” and an “alignment part”), and a base

ing of what features are most relevant and understandablefeature, in our case either a color histogram or a histogram

A similar task is set by Doerscét al. [7], who discover of oriented gradients (HOG)]. For example, a POOF

the architectural features best suited to recognizingitlge ¢ may discriminate between thed-winged blackbirdnd the

in which a street scene was photographed. With a muchrusty blackbird based orcolor histogramsat thewing after

smaller dataset and a much larger number of classes, wealignment by the wing and theye

take a careful approach based on labeled parts rather than To build a POOF, all the training images of the two

their random image patches. Shrivastaval. [21] weight classes are rotated and scaled to put the two chosen parts

regions in an image by their distinctiveness for purposes ofin xed locations. Each image is then cropped to a xed-

cross-domain similar image search. This is similar to our size rectangle enclosing the two parts, and the cropped im-

method for nding regions to annotate in our illustrative age partitioned into a grid of square tiles. We extract the

images, but they work with a single image to nd iés- base feature from each tile, concatenate these features to

tinctive regions, while we work with two classes of image get a feature vector for the image, and train a linear SVM



to distinguish the two classes. Tiles with low SVM weights ilarity measure between classes, with which we can deter-
are discarded, and a connected component of the remainingnine the most similar class to any given class. The red-
tiles about the feature part is taken as the support region fo winged blackbird and its ve most similar species are shown
the POOF. The SVM is retrained using the base feature onat the top of Figure..

just this region to get the nal classi er. We use the parame-
ter settings fromJ] unaltered: images are aligned to put the
two parts on a horizontal line with 64 pixels between them,
the crop is 128 pixels wide and 64 pixels tall, and we use
two grids, of 8 x 8 and 16 x 16 pixel tiles. The output of the
POOF is the signed distance from the decision boundary of
the classi er, and while each POOF is trained on just two
classes, 1] show that a collection of these POOF outputs
is an effective feature vector for distinguishing other-sub
classes of the same basic clasg)( other species of birds).

3.3. Choosing Discriminative Features

Given a pair of very similar classes, we are now inter-
ested in discovering what features can be used to tell them
apart. We consider as candidates all the features from our
vocabulary that are based on this pair of classes. With the
birds dataset, with twelve parts and two low-level features
there are 264 candidate features. We rank the features by
their discriminativenessde ning the discriminativeness of
featuref as

2
With 200 classes, fteen parts, and two base features, we di = M; (1)
can train millions of POOFs, although in practice we will 12
always use a subset. where ; and , are the mean feature values for the two

POOFs are suited to our task for two reasons. First of classes, and; and ; are the corresponding standard devi-
all, they have been shown to be effective at ne-grained ations. Maximizing discriminativeness is similar in sptd
categorization. Second, and of special importance to us,the optimization performed by LDA, which maximizes in-
POOFs are relatively easy to interpret. If we discover that terclass variation and minimizes intraclass variationreHe
two bird species are well-separated by a color histogram-we seek a individual score for each feature rather than a
based POOF aligned by the beak and the back, and the SVMprojection of the feature space, as it allows us to report par
weights are large at the grid cells around the beak, we carticular features as “most discriminative.”
interpret this as “These two species are differentiatedhby t

color of the beak.” This kind of understanding is our goal. 3.4. Visualizing the Features

Once we have determined which features are most useful
3.2. Finding Similar Classes to distinguish between a pair of classes, we would like to

Few would confuse a cardinal and a pelican. It would present this information in a format that will help a viewer
be dif cult and not useful to describe the particular feasir  understand what he should look for. We present each feature
that distinguish them; any feature you care to look at will as a pair of illustrative images, one from each species, with
suf ce. The interesting problem is to nd what details dis- the region of interest indicated in the two images.
tinguish classes of similar appearance. To do this we must The rst step is to choose the illustrative images. In do-
rst determine which classes are similar to each other. ing this, we have several goals:

Our starting point is our vocabulary of POOFs. For ef-
ciency we take a subset of 5000 POOFs, so each image
is describe by the 5000-dimensional vector of their outputs
An L1 or L2 distance-based similarity in this space is ap-
pealing for its simplicity, but considers all features to be
equally important, which is unlikely to be a good idea. The
POOFs are based on random classes and parts. Some of
these choices will be good, looking at two species thatdiffe
in a clear way at the parts being considered. Others will look
at parts that are not informative about those two classes. We
wish to downweight features that are not discriminativel an
emphasize those that are. A standard tool for this is linear
discriminant analysis (LDA)10], which, from a labeled set
of samples wit classes, learns a projection toan 1
dimensional space that minimizes the ratio of within-class
variance to between-class variance. We apply LDA, and use
the negative L1 distance in the resulting 199-dimensional  We translate these three goals directly into three objec-
space as a similarity measure. tive expressions to be minimized. For the rst, we take the

By applying this image similarity measure to mean fea- view that the images should be somewhat farther from the
ture vectors over all the images in a class, we obtain a sim-decision boundary than average for their class, but not too

1. The images should exemplify the difference they are
intended to illustrate. If the feature is beak color,
where one class has a yellow beak and the other gray,
then the images must have the beak clearly visible,
with the beak distinctly yellow in one and gray in the
other.

2. The images should minimize differences other than
the one they are intended to illustrate. If the yel-
low and gray-beaked species above can both be either
brown or black, it is misleading to show one brown
and one black, as this difference does not distinguish
the classes.

3. To facilitate direct comparison of the feature, the two
samples should have their parts in similar con gura-
tions,i.e., the birds should be in the same pose.



far. This corresponds to the feature being somewhat ex-
aggerated, but avoids extreme values from the POOF which
may be outliers or particularly unusual in some way. Taking
c1 andc; as the classes associated with positive and nega-
tive feature values respectively, lat be the 74 percentile

of feature values ouy, and letb, be the 28 percentile of
feature values om,. We take these exaggerated, but not
extreme feature values as “best,” and attempt to minimize

Flal2) =@+ jf(l) bj)@+jf(2) bj); (2

millions of years of common evolution
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. . L Figure 6. Similarity matrices. (a) Visual similarity. (b) Phyloge-
wherel, andl are the candidate illustrative images from netic similarity. In both, rows/columns are in order of a depth-

classes; andc,, andf () is the feature to be illustrated. rst traversal of the evolutionary tree, ensuring a clear structure in

To achieve the second goal, we consider an additional se{b). The large dashed black box corresponds to the passerine birds
of features, based on POOFs trained on classes other thagtperching birds,” mostly songbirds), while the small solid black
c; andc,. We use the 5000 POOFs used to determine in- box holds similarities between crows and ravens on the y-axis and
terclass similarity in Sectioi.2, less those with the same blackbirds and cowbirds on the x-axis.

feature part as the POOF to be illustrated, and attempt to L , , ,
minimize the L1 distance between the resulting “other fea- species, it is not combinatorially feasible to produce an en
ture” vectorsy(l 1) andg(l ) try on the differences between evargir of species. For an

° - automatically-generated, digital guide, this is not anéss
G(l1;12) = jig(l1) g(l2)jj1 @) We envision our eld guide with a main entry for each
To achieve the third goal, we consider the part locations species. Examples are shown in Figur¢a) and4 (a). The
in the two images. We resize the images so that in each,main entry shows the species in question, and th& topst
the mean squared distance between parts is 1, then nd thesimilar other species (we uge= 5) as determined by the
best t similarity transformation from the scaled location  method of Sectior3.2. Selecting one of the similar species
X1 in imagel ; to the scaled locations, in imagel,. We will lead to a pair entry illustrating the differences beeme
minimize the squared error of the transformation, which we the two species as described in Secti8risand3.4. Fig-
denoteH (1 1;1,). Overall, we choose the image pair that uresl (b) and4 (b) and (c) show examples of pair entries.
minimizes We nd that many of the highlighted features, including the
Ke F(11:12)+ kaG(l1:12) + ku H(I1:12); (4) dark auriculars (feather below and behind the eye) of the
] ] ] Kentucky warbler, the black “necklace” of the Canada war-
where coef cientskr , ks, andky determine the impor-  per and the white “spectacles” of the yellow-breasted cha

tance of each objective. To make them equally important, 4| shown in Figures), correspond to features mentioned
we set each to the multiplicative inverse of the standard de-j,, pirqg guides (all included in the Sibley GuidzZ]).
viation of its termj.e., ke = -+, ks = -+, andky = -L-.

The second step in visualizing the features is annotating4.1. A Tree of Visual Similarity
the chosen images to indicate the feature in question. Recal Visual similarity as estimated from the POOFs is the ba-
that the feature is the output of a POOF, which at its core is sis for our visual eld guide. In similarity estimation, uké
a vector of weights to be applied to a base feature extractedstraight classi cation, there is no obvious ground truth. |
over a spatial grid. By taking the norm of the sub-vector of we say a blackbird is more like a crow than like a raven,
weights corresponding to each grid cell, we obtain a mea-who can say we are wrong? One way to get a ground truth
sure of the importance of each cell. An ellipse tto the grid for similarity is to consider the evolutionary “tree of life
cells with weight above a small threshold then illustrabes t  the tree with a root representing the origin of life, a leaf fo

feature. every extant species or evolutionary dead end, and a branch
] ] _ _ for every speciation event, with edge lengths representing
4. A Visual Field Guide to Birds time between speciations. Species close to each other in the

As a direct application of the techniques in Sectipwe tree of life are in a sense “more similar” than species that
can construct a visual eld guide to birds. While this guide are not close, although this will not necessarily correspon
will not have the notes on habitat and behavior of a tradi- to visual similarity.
tional guide, it will have a couple advantages. First, itis  The scienti c community has not reached consensus on
automatically generated, and so could easily be built for an the complete structure of the tree of life, or even the sub-
other domain where guides may not be available. Secondjtree containing just the birds in CUBS-200. However there
it can be in some sense more comprehensive. While a trais progress in that direction. Recently Jetzal. [12] pro-
ditional, hand-assembled guide will have an entry for each posed the rst complete tree of life for all 9993 extant bird
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(a) Species display For any species, we can display the n
similar other species. The most similar species are disp
surrounding the species in question, with the thickness o
spokes proportional to the visual difference between species
Kentucky warbler is most similar to the Canada warbler.

(b) Species pair display After choosing one of the spokes, '
display sample images of the two species, followed by a few
of images chosen and annotated to illustrate key v
differences. The Canada warbler is distinguished from
Kentucky warbler the curved of the yellow band by the ey
complete eye-ring, and a black necklace. (c) The next

similar species, the yellow-breasted chat, is distinguished b
color of its eye band. We may show any number of sal
images (here we fill the figure), but in general three pair
images is sufficient.

Cana arbler

Figure 4. Visual eld guide pages for the Kentucky warbler.
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Figure 5. The phylogenetic “tree of life” representing evolutionary hystdks in Figure2, species visually similar to the red-winged
blackbird are in blue, and those similar to the Kentucky warbler are in rélodgh the American crow and common raven are visually

similar to blackbirds, they are not close in terms of evolution.

Rank Species Pair
Gadwall vs Paci c Loon

1
2 Hooded Merganser vs Pigeon Guillemot
6 Red-breasted Merganser vs Eared Grebe
11 Least Auklet vs Whip poor Will
Black billed Cuckoo vs Mockingbird
Figure 7. The gadwall (left) and the paci c loon (right) have simi-

16

Table 1. Species pairs with high visual and low phylogenetic sim-
lar overall appearance but are not closely related.

ilarity.
species, complete with estimated dates for all splits, dase ity matrix of the bird species using the POOFs, then apply

on a combination of the fossil evidence, morphology, and one of these standard methods, Saitou and Nei's “neighbor-
genetic data. Pruning this tree to include only the speciesjoining” [2(], to get a tree based not on evolutionary history
in CUBS-200 yields the tree shown in Figusgproduced  but on visual similarity. This tree is shown in Figuze In
in part with code from [4]). This tree shows the overall —an interactive form, it will allow a user to scroll througreth
birds in an order that respects similarity and shows a hierar

phylogenetic similarity relations between bird species.
As a browsing interface to our digital eld guide, we pro- chy of groups of similar birds.
We can compare the similarity-based tree in Figlre

pose a similar tree, in the same circular format. This tree,

however, is based on visual similarity rather than phyloge- with the evolutionary tree in Figur& They generally agree
netic similarity. Producing a tree from a similarity matrix as to which species are similar, but there are exceptions. Fo
is a basic operation in the study of phylogeny, for which example, crows are close to blackbirds in the similaritg tre
standard methods exist (note the tree of life in Figblie but the evolutionary tree shows that they are not closely re-
based on more advanced techniques that use additional datated. Such cases may be examples of convergent evolution,
beyond a similarity matrix). We calculate the full similar- in which two species independently develop similar traits.



We can nd such species pairs, with high visual simi-
larity and low phylogenetic similarity, in a systematic way

The phylogenetic similarity between two species can be

guanti ed as the length of shared evolutionary histormsy,
the path length, in years, from the root of the evolution-

nigues such as the neighbor-joining algorithi][also use
this as a similarity measure). Figugga) shows a similar-
ity matrix calculated in this way for the 200 bird species,

with the corresponding matrix based on visual similarity as [13]

Figure 6 (b). Potential examples of convergent evolution
correspond to high values in (a) and relatively low values in

(b). The blackbirds-crows region is marked as an example.
We rank all 2%° species pairs by visual similarity (most  [14]

similar rst) and by phylogenetic difference (least simmila
rst). We then list all species pairs in order of the sum of [15] J.Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog breed
these ranks.Tableshows the top ve pairs, excluding pairs
where one of the species has already appeared on the list tf16] M.-E. Nilsback and A. Zisserman. Automated ower clas-
avoid excessive repetition (as the paci ¢ loon scores lyighl
when paired with the gadwall, it will also score highly with

all near relatives of the gadwall). The top ranked pair is a

[9] R. Farrell, O. Oza, N. Zhang, V. |. Morariu, T. Darrell, and

[10]

ary tree to the species' most recent common ancestor (techfi1]

[12]

[17]

duck and a loon, two species the author had mistakenly as-

sumed were closely related based on their visual similarity [1g]

Figure 7 shows samples of these two species. Space pre-
cludes including images of the other pairs in Tabebut
images can be viewed on Cornell's All About Birds sitg. [

5. Conclusions

Recognition techniques, in particular methods of esti- [20

mating visual similarity, can be used for more than justiden
ti cation and image search. Here we exploit a setting in

which computers can do better than typical humans — ne- [21]
grained categorization in a specialized domain — to show

[19]

how progress in computer vision can be turned to helping 22]
humans understand the relations between the categories. [23]
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